Fault-Tolerant MPC Control of PEM Fuel Cells
نویسندگان
چکیده
منابع مشابه
Fault-Tolerant MPC Control of PEM Fuel Cells
In this paper, fault-tolerant MPC control of PEM fuel cells is addressed. MPC is a suitable control methodology to control fuel cell systems because of their multivariable and complex behaviour. Additionally, MPC is one of the control methodologies that can introduce more easily fault-tolerance. However, the problem of including actuator fault-tolerance in the control loops of these systems has...
متن کاملFault Tolerant Control of a PEM Fuel Cell using qLPV Virtual Actuators
This paper proposes a fault tolerant control (FTC) strategy based on the use of quasi-linear parameter varying (qLPV) virtual actuators approach for proton exchange membrane (PEM) fuel cells. The overall solution relies on adding a virtual actuator in the control loop to hide the fault from the controller point of view, allowing it to see the same plant as before the fault, in this way keeping ...
متن کاملClosed-loop Subspace Predictive Control for Fault Tolerant MPC Design
Subspace predictive control (SPC) is recently seen in the literature for joint system identification and control design. This combination enables automatically tuning the parameters in conventional model predictive control (MPC); and therefore provides a solution to the problem of fault tolerant MPC design. The existing SPCs either deal with open-loop data or depend on the information of the co...
متن کاملFuel Processors for PEM Fuel Cells
Objectives • Demonstrate high performance desulfurizer, catalyst, micro-reactor and microcombustor/ microvaporizer concepts that will enable production of compact fuel processors for proton exchange membrane (PEM) fuel cells • Design, fabricate and evaluate a 1-kWe fuel-flexible fuel processor during the first 36 months (one of the fuels capable of being reformed will be EPA Phase II reformulat...
متن کاملTemperature control of open-cathode PEM fuel cells
Proper temperature control of Proton Exchange Membrane Fuel Cells is a crucial factor for optimizing fuel cell performance. This paper describes a model-based characterization of the equilibrium points of an open-cathode fuel cell system. Phase plane analysis of the nonlinear model versus a linearized model around different points of operation shows the potential of approximating the nonlinear ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IFAC Proceedings Volumes
سال: 2008
ISSN: 1474-6670
DOI: 10.3182/20080706-5-kr-1001.01883